Plasmonic 2D and 3D Microstructures: Assembly and Applications

Dr. Alexey Yashchenok

Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany

50th Zakopane School of Physics, 18-23 May 2015

Colorful motifs of plasmonic

Windows in Churches

Origin of plasmonic

Plasmonic Structures

Optoelectronics

Raman spectroscopy

Non-invasive Fingerprint of molecules Label-free

Diagnostics, Pharmacy, Art

<u>Cross section = $\sigma_R 10^{-31} - 10^{-29} \text{ cm}^2/\text{mol}$ </u>

Surface enhanced Raman scattering (SERS)

 $hv = hv_R + hv'$

Roughened metal surface Enhancement 10⁶⁻⁸

Single particles or Aggregates Enhancement 10⁸⁻¹⁵

Acquiring signal from tiny volume Cross section $\approx 10^{-16} \text{ cm}^2/\text{mol}$

Mechanism of SERS

$$P^{RS}(v_s) = N\sigma_{free}^R I(v_L)$$

Local Field Enhancement

- Enhancement of the local excitation field
- Enhancement of the local Raman scattering field

 $P^{SERS}(v_s) = N\sigma_{ads}^R |A(v_L)|^2 |A(v_s)|^2 I(v_L)$

Increase of the Raman scattering cross section

• Electronic coupling between molecule and metal (chemical effect)

I(*v*_{*L*})|*A*(*v*_{*L*}) $I(v_{s})|A(v_{s})|$

Amplification of lipids and glycocalix by Au-NPs

M. Delcea, N. Sternberg, A.M. Yashchenok et al. ACSNano, 2012, 6, 4169.

Controlled assembly of plasmonic nanoparticles

J. R. Soc. Interface (2010) 7, S435. Anal. Bioanal. Chem. (2009), 394, 1819. Acc. Chem. Res. 2006, 39, 443.; Small 2011, 7, No. 24, 3445.

Self-assembly technique

Nano Today (2013) 8, 480.

Template-assisted technique

Adv. Mater. 2012, 24, 2663.

Layer-by-Layer assembly (LbL)

G. Decher, J.D. Hong, Macromol. Chem. Sym., 1991, 46, 321

10 nm

- Can be made on ANY surface
- Control of composition
- Different functionalities
- Materials: polymers, proteins,
- nanoparticles, …
- •Components can be fixed or mobile
- •Porosity control, ...

<u>A "real world" Application</u>

Metal Rubber™ (NanoSonic Inc.)

Popular Science, August 2004, page 36

Contact Lenses

US Patent US 520 8111

LbL hollow multilayer capsules

- Shell permeability control
- Loading of molecules > 1kDa
- Colloids from 50 nm to few microns
- Even cells and RBCs can be used

Multilayer shell properties

830 nm

473 nm

Adv. Funct. Mater. 2010, 20, 3136

PCCP, 2008, 10, 6899

Our Focuses

SERS sensors base on microparticles and microcapsules

SERS flexible substrates for express diagnostics

Computer analysis of SERS spectra

Imaging of cells and tissues

SERS of the D-Glucose in water

Glucose concentration in blood: *healthy* ~ 70-150 mg/mL; *diabetics* > 150 mg/mL.

A.M. Yashchenok, D. Borisova, B.V. Parakhonskiy et. al, Ann. Phys. (Berlin) 2012, 524, 723.

SERS probes based on inorganic microparticles

B.V. Parakhonskiy, Yu.I. Svenskaya, A.M. Yashchenok, et al., Colloids and Surfaces B: Biointerfaces, 2014, 118, 243.

SERS probe made of SWCNT/AuNPs

Yashchenok, A. Masic , D. Gorin et.al, Small 2013, 9, 351.

SWCNT G-band Enhancement

60-fold increase of G-band

Laser power 0.1 mW, 785 nm

Yashchenok, A. Masic , D. Gorin et.al, Small 2013, 9, 351.

Intracellular SERS sensing

Signal to noise ration: non-resonant ~ 5; SERS ~100

Yashchenok, A. Masic , D. Gorin et.al, Small 2013, 9, 351.

Laser-induced shift of the G-band

532 nm, power density ~ $12.7 \cdot 10^4$ W/cm²

Yashchenok, A. Masic, D. Gorin, Small 2015, 11, 1320-1327.

The effective temperature assessment

SiO₂+SWCNT+AuShell

Yashchenok, A. Masic, D. Gorin, Small 2015, 11, 1320-1327.

Heating and Cooling measurements

Yashchenok, A. Masic, D. Gorin, Small 2015, 11, 1320-1327.

Probe calibration

Yashchenok, A. Masic, D. Gorin, Small 2015, 11, 1320-1327.

Linkam THMS600 stage

SERS-based satellites

SiO₂/(PAH/Astralen)₃/Au

SiO₂/(PAH/Astralen)₃/Ag

L929 mouse fibroblast cell

Laser tweezers at 976 nm

SERS-based satellites

Raman imaging in the cell: red – Astralen G-mode blue – DNA bases green – Lipids

785 nm, laser power of 0.2 μW

L929 mouse fibroblast cell

Intracellular SERS of Plasmonic Waveguides

Gold-covered SiN particle d~200 nm.

Nanoplasmonic Chitosan Nanofibers

Immediate functionalization

Controlled distribution of AuNPs

EF of 2.10⁵ for 86 % points

Nanoplasmonic Chitosan Nanofibers

<u>SERS</u>	detection	of	2-
naphthalenethiol		V	vith
concent	ration less that	an 10 ⁻¹⁸	⁵ M

SERS detection of Rhodamine 6G and D-Glucose in micromolar range

785 nm, 1% of laser power

ACS Applied Mater and Inter, accepted

Bifunctional Gold/Gelatin Hybrid Nanocomposites

NaBH₄

ACS Appl. Mater. Interfaces 2014, 6, 1999.

Photoacoustic Imaging

Visualization of microcapsules by photoacoustic

SERS of blood content

- 642 C-C twisting (Tyrosine)
- 808 C-C-O stretching (L-Serine)
- 830 C-C stretching (Collagen)
- 898 C-O-H bending (D-galactosamine)
- 1126 D-mannos
- 1162 Tyrosine
- 1228 C-H methine in-plane bending
- 1341 Adenin
- 1400 C-H bending (Collagen)

Conclusions

- LbL and template-assited techniques are powerful tools for tuning optical properties of plasmonic microstructures
- SWCNT/AuNPs provides SERS enhancement at extremely low laser intensity
- The temperature is evaluated through the intensity ratio of the Anti-Stokes/Stokes
- Detection of biomolecules inside living cells with fast acquisition rates and at low laser power
- Monitoring the release of Dex-Rho from capsules inside living cells
- SERS detection of small molecules in micromolar range
- Photoacoustic imaging of capsules in blood

Collaborations and Acknowledgements

MPIKG Department of Interfaces

H. Möhwald, B.-E. Pinchasik, A. Heilig, R. Pitschke

MPIKG Department of Biomaterials A. Masic, C. Pilz

Queen Mary University, School of Engineering and Material Sciences G.B. Sukhorukov

<u>Ghent University, Department of Information</u> <u>Technology, Department of Molecular</u> <u>Biotechnology</u> A. Skirtach, P.C. Wuytens <u>The Charité-Universitätsmedizin Berlin</u> H. Baemler, R. Georgieva

Michigan University, Department of Chemical Engineering B.S. Shim, N.A. Kotov

Group Members

E. Prikhozdenko

D. Bratashov

I. Stecura

Stiftung/Foundation

The Organizing Committee

Thank you for your attention