

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Chris Milne

Using X-ray free electron lasers to understand biological function and how it can be disrupted (or initiated)

Structure

- X-ray crystallography
- electron microscopy
- atomic force microscopy
- electron diffraction
- X-ray absorption spectroscopy
- NMR

Protein structure of human hemoglobin in the T-state with oxygen bound at all 4 hemes (from PDB 1GZX Wikipedia)

Dynamics

- Laser spectroscopy
- NMR
- time-resolved diffraction
- X-ray absorption spectroscopy

Rotating hydrated myoglobin molecule http://uweb.cas.usf.edu/chemistry/faculty/space/ B. Space & J. Belof (University of South Florida)

chris.milne@psi.ch

Zakopane School of Physics

X-ray emission: Retrieving electronic information

X-ray scattering: Retrieving local and global structure

X-ray diffraction: Retrieving atomic-scale structure

May 20, 2015

There are two methods of generating light at a 3rd-generation storage ring source (synchrotron)

3rd

Myoglobin is an oxygen transport protein that has the ability to bind small molecules such as O₂, CO, NO and CN

Small changes in the ligand character have profound spectroscopic effects

We can knock this ligand off with a photon of green or blue light

Myoglobin: Ground-state structures using MXAN

Resulting optimized MXAN structure gives good agreement with crystallography with better precision

F.A. Lima, T.J. Penfold et al., PCCP 16, 1617 (2014)

Myoglobin: Pre-edge transitions using TD-DFT

The pre-edge peaks are primarily 1s to 3d transitions with core-to-ligand contributions only to the CO/NO/CN/O $_2$

ORCA: F. Neese, WIREs Comput Mol Sci 2012, 2: 73-78

F.A. Lima, T.J. Penfold et al., *PCCP* 16, 1617 (2014)

How do we apply this to time-resolved experiments ?

microXAS beamline

- tuneable hard x-ray in-vacuum undulator (4-20 keV)
- Si (111), Ge(111) & Si(311) monochromator crystals
- micro-focus capability (< 1µm²)
- 10¹² photons/second

PHOENIX beamline

- tuneable 'tender' x-ray in-vacuum undulator (0.8-8 keV)
- Si (111), KTP, Be, InSb monochromator crystals
- micro-focus capability (< 1µm²)
- 10¹¹-10¹² photons/second

F.A. Lima, C.J. Milne et al. Rev. Sci. Instr. 82, 063111 (2011)

Using fast avalanche photodiodes and either boxcar integrators or track-and-hold circuits we can selectively measure using only the camshaft pulse giving us **100 ps** time resolution

	MbO_2	MbCO	MbNO
Quantum yield	0.28	1	0.5
Hot 6-coordinate relaxation	$1 \mathrm{ps}$	-	$1 \mathrm{ps}$
Geminate recombination	45 ps	-	13 & 200 ps
Geminate probability	0.3	-	$0.5 \ \& \ 0.5$
Binary recombination	$>10 \ \mu s$	$>10 \ \mu s$	-
Binary probability	0.7	1	-

X. Ye et al. JACS 124, 5914 (2002); E. Scott et al. J. Biol. Chem. 276, 5177 (2001)

Of the ligands, MbNO is the most interesting but still poorly understood

- •NO rebinds very quickly
- •Geminate recombination occurs on two timescales (13 & 200 ps)
- There's an indication of a 6-coordinate domed structure
 MbNO & MbO₂ have similar binding geometries but very different affinities

•The geminate recombination has an excitation wavelength-dependence

May 20, 2015

chris.milne@psi.ch

Zakopane School of Physics

As expected quasi-continuous excitation of MbCO shows formation of deoxyMb

F.A. Lima, C.J. Milne et al. Rev. Sci. Instr. 82, 063111 (2011)

May 20, 2015

PAUL SCHERRER INSTITU

chris.milne@psi.ch

Zakopane School of Physics

How are we going to get better time-resolution ?

https://www.fels-of-europe.eu

Free electron lasers

which leads to exponential gain than saturation

So we have a single-pass, noise-seeded free electron laser

C. Pellegrini and S. Reiche, in Digital Encyclopedia of Applied Physics, Wiley (2003).

Moving FELs into the X-ray regime

Table 1 | Design and typical measured parameters for both hard (8.3 keV) and soft (0.8–2.0 keV) X-rays. The 'design' and 'hard' values are shown only at 8.3 keV. Stability levels are measured over a few minutes.

Parameter	Design	Hard	Soft	Unit
Electrons	<u> </u>			
Charge per bunch	1	0.25	0.25	nC
Single bunch repetition rate	120	30	30	Hz
Final linac e ⁻ energy	13.6	13.6	3.5-6.7	GeV
Slice [†] emittance (injected)	1.2	0.4	0.4	μm
Final projected [†] emittance	1.5	0.5-1.2	0.5-1.6	μm
Final peak current	3.4	2.5-3.5	0.5-3.5	kA
Timing stability (r.m.s.)	120	50	50	fs
Peak current stability (r.m.s.)	12	8-12	5-10	%
X-rays				
FEL gain length	4.4	3.5	~1.5	m
Radiation wavelength	1.5	1.5	6-22	Å
Photons per pulse	2.0	1.0-2.3	10-20	10 ¹²
Energy in X-ray pulse	1.5	1.5-3.0	1-2.5	mJ
Peak X-ray power	10	15-40	3-35	GW
Pulse length (FWHM)	200	70-100	70-500	fs
Bandwidth (FWHM)	0.1	0.2-0.5	0.2-1.0	%
Peak brightness (estimated)	8	20	0.3	10 ³²
Wavelength stability (r.m.s.)	0.2	0.1	0.2	%
Power stability (r.m.s.)	20	5-12	3-10	%

*Brightness is photons per phase space volume, or photons s⁻¹ mm⁻² mrad⁻² per 0.1% spectral bandwidth. ^{\hat{T}}Slice' refers to femtosecond-scale time slices and 'projected' to the full time-projected (that is, integrated) emittance of the bunch

Figure 1 | LCLS machine layout. Layout from the electron gun to the main dump, with two bunch compressors, BC1 and BC2, and a 132-m-long undulator.

2009: LCLS first achieved lasing at hard X-ray wavelengths

P. Emma et al., Nat. Phot. 4, 641 (2010)

Zakopane School of Physics

May 20, 2015

 10^{1}

10

10

EL power (W)

Now there are XFEL projects everywhere...

May 20, 2015

What is an XFEL going to be good at ?

XFELS are defined by lots of photons in a very short pulse but the average flux isn't that different from a 3rd-generation synchrotron

Only *three*^{*} types of experiments benefit from the high peak flux from an XFEL:

1. Single-shot experiments that need lots of photons in a short pulse

2. **Pump-probe measurements** where the short pulse allows measurement of fast dynamics

3. Nonlinear X-ray experiments that depend nonlinearly on the number of incident X-ray photons

Not all experiments are going to automatically be better at an XFEL

*I'm ignoring the transverse coherence properties

How is this relevant to biology ?

Serial Femtosecond Crystallography (SFX)

May 20, 2015

chris.milne@psi.ch

Zakopane School of Physics

SFX Highlight: High-resolution damage-free measurements

SFX Highlight: G protein coupled receptors (GPCRs)

GPCRs are membrane proteins that mediate cellular communication but are difficult to grow in large crystals

W. Liu et al. *Science* **342**, 1521 (2013)

But GPCRs can be grown into small crystals in lipidic-cubic phase media which can be injected into SFX experiments AT₁R blockers are anti-hypertensive drugs but structure has been difficult due to inability to grow large crystals

Figure 3. Interactions of ZD7155 with AT_1R

(A) Cross-section view of AT_1R highlighting the shape of the ligand binding pocket.

(B) Zoomed-in view of the ligand binding pocket showing all residues within 4 Å from the ligand ZD7155, along with the 2mFo-DFc electron density (blue mesh) contoured at 1 σ level. In (A) and (B) ZD7155 is shown as sticks with yellow carbons.

(C) Schematic representation of interactions between AT₁R and ZD7155. Hydrogen bonds/salt bridges are shown as red dashed lines. The residues shown by mutagenesis to be critical for ligand binding are labeled red, those that are important for either peptide or non-peptide ligands binding are labeled in yellow, and the residues that discriminate between peptide and non-peptide ligands are labeled in purple. See also Figure S2 and Table S2.

human Angiotensin II type 1 receptor at 2.9Å

H. Zhang et al. Cell 161, 1-12 (2015)

SFX Highlight: Time-resolved SFX on Photosystem II

PAUL SCHERRER INSTITUT SFX has proven extremely successful

OPEN

Simultaneous Femtosecond X-ray **Spectroscopy and Diffraction of** Photosystem II at Room Temperature

Nathaniel Echols,¹ Carina Glöckner,³ Julia Hellmich,³ Hartawan Laksmono,⁴ Raymond G. Sierra,⁴ Benedikt Lassalle-Kaiser,¹* Sergey Koroidov,⁵ Alyssa Lampe,¹ Guangye Han,¹ Sheraz Gul,¹ Dörte DiFiore,³ Despina Milathianaki,² Alan R. Fry,² Alan Miahnahri,² Donald W. Schafer,²

Garth J. Williams,² Sébastien Boutet,² Johannes Messinger,⁵ Athina Zouni,³ Nicholas K. Sauter,¹

Jan Kern,^{1,2} Roberto Alonso-Mori,² Rosalie Tran,¹ Johan Hattne,¹ Richard J. Gildea,²

Tsu-Chien Weng,⁶ Jonas Sellberg,^{6,7} Matthew J. Latimer,⁶ Ralf W. Grosse-Kunstleve,¹ Petrus H. Zwart,¹ William E. White,² Pieter Glatzel,⁸ Paul D. Adams,¹ Michael J. Bogan,^{2,4}

Vittal K. Yachandra,¹† Uwe Bergmann,²† Junko Yano¹†

LETTER

Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser

Christopher Kupitz¹*, Shibom Basu¹*, Ingo Grotjohann¹, Raimund Fromme¹, Nadia A. Zatsepin², Kimberly N. Rendek¹, Mark S. Hunter^{1,3}, Robert L. Shoeman⁴, Thomas A. White⁵, Dingjie Wang², Daniel James², Jay-How Yang¹, Danielle E. Cobb¹, Brenda Reeder¹, Raymond G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, C. W. Show and G. Sierra⁶, Haiguang Liu², Anton Barty⁵, Andrew L. Aquila^{5,7}, Daniel Deponte^{5,8}, Richard A. Kirian^{2,5}, Show and Show a Sadia Bari^{9,10}, Jesse J. Bergkamp¹, Kenneth R. Beyerlein⁵, Michael J. Bogan⁶, Carl Caleman^{5,11}, Tzu-Chiao Chao^{1,12} Chelsie E. Conrad¹, Katherine M. Davis¹³, Holger Fleckenstein⁵, Lorenzo Galli^{5,14}, Stefan P. Hau-Riege³, Stephan Kassemeyer^{4,9}, Hartawan Laksmono⁶, Mengning Liang⁵, Lukas Lomb⁴, Stefano Marchesini¹⁵, Andrew V. Martin^{5,16}, Marc Messerschmidt⁸, Despina Milathianaki⁸, Karol Nass^{4,5,14}, Alexandra Ros¹, Shatabdi Roy-Chowdhury¹, Kevin Schmidt², Marvin Seibert^{8,17}, Jan Steinbrener⁴, Francesco Stellato⁵, Lifen Yan¹³, Chunhong Yoon^{5,7}, Thomas A. Moore¹, Ana L. Moore¹, Yulia Pushkar¹³, Garth J. Williams⁸, Sébastien Boutet⁸, R. Bruce Doak², Uwe Weierstall², Matthias Frank³, Henry N. Chapman^{5,14,18}, John C. H. Spence² & Petra Fromme¹

ARTICLE

Received 19 Jul 2013 | Accepted 8 Nov 2013 | Published 19 Dec 2013

Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

Linda C. Johansson¹, David Arnlund¹, Gergely Katona¹, Thomas A. White², Anton Barty², Daniel P. DePonte², Robert L. Shoeman^{3,4}, Cecilia Wickstrand¹, Amit Sharma¹, Garth J. Williams⁵, Andrew Aquila², Michael J. Bogan⁶, Carl Caleman², Jan Davidsson⁷, R. Bruce Doak⁸, Matthias Frank⁹, Raimund Fromme¹⁰, Lorenzo Galli^{2,11}, Ingo Grotjohann¹⁰, Mark S. Hunter¹⁰, Stephan Kassemeyer^{3,4}, Richard A. Kirian⁸, Christopher Kupitz¹⁰, Mengning Liang², Lukas Lomb^{3,4}, Erik Malmerberg¹, Andrew V. Martin², Marc Messerschmidt⁵, Karol Nass^{2,11}, Lars Redecke¹², M. Marvin Seibert⁵, Jennie Sjöhamn¹, Jan Steinbrener^{3,4}, Francesco Stellato², Dingjie Wang⁸, Weixaio Y. Wahlgren¹, Uwe Weierstall⁸, Sebastian Westenhoff¹, Nadia A. Zatsepin⁸, Sébastien Boutet⁵, John C.H. Spence⁸, Ilme Schlichting^{3,4}, Henry N. Chapman^{2,11}, Petra Fromme¹⁰ & Richard Neutze¹

Structure of the Angiotensin Receptor **Revealed by Serial Femtosecond Crystallography**

Haitao Zhang,¹ Hamiyet Unal,² Cornelius Gati,³ Gye Won Han,⁴ Wei Liu,⁵ Nadia A. Zatsepin,⁶ Daniel James,⁶ Dingjie Wang,⁶ Garrett Nelson,⁶ Uwe Weierstall,⁶ Michael R. Sawaya,⁷ Qingping Xu,⁸ Marc Messerschmidt,⁹ Garth J. Williams,¹⁰ Sébastien Boutet,¹⁰ Oleksandr M. Yefanov,³ Thomas A. White,³ Chong Wang,¹¹ Andrii Ishchenko,⁴ Kalyan C. Tirupula,² Russell Desnoyer,² Jesse Coe,⁵ Chelsie E. Conrad,⁵ Petra Fromme,⁵ Raymond C. Stevens,^{1,4,12} Vsevolod Katritch,¹ Sadashiva S. Karnik,² and Vadim Cherezov^{4,7}

TERS

PUBLISHED ONLINE: 18 DECEMBER 2011 | DOI: 10.1038/NPHOTON.2011.297

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

Anton Barty, Carl Caleman and Henry N. Chapman et al.*

May 20, 2015

High-Resolution Protein Structure doi:10.1038/nature13453 Marc Messerschmidt,² M. Marvin Seibert,² Jason E. Koglin,² Dimosthenis Sokaras,⁶ **Determination by Serial** Femtosecond Crystallography

Sébastien Boutet, ¹* Lukas Lomb, ^{2,3} Garth J. Williams, ¹ Thomas R. M. Barends, ^{2,3} Andrew Aquila, ⁴ R. Bruce Doak,⁵ Uwe Weierstall,⁵ Daniel P. DePonte,⁴ Jan Steinbrener,^{2,3} Robert L. Shoeman,⁴ Marc Messerschmidt,¹ Anton Barty,⁴ Thomas A. White,⁴ Stephan Kassemeyer,^{2,3} Richard A. Kirian,⁵ M. Marvin Seibert,¹ Paul A. Montanez,¹ Chris Kenney,⁶ Ryan Herbst,⁶ Philip Hart,⁶ Jack Pines,⁶ Gunther Haller,⁶ Sol M. Gruner,^{7,8} Hugh T. Philipp,⁷ Mark W. Tate,⁷ Marianne Hromalik,⁹ Lucas J. Koerner,¹⁰ Niels van Bakel,¹¹ John Morse,¹² Wilfred Ghonsalves,¹ David Arnlund,¹³ Michael J. Bogan,¹⁴ Carl Caleman,⁴ Raimund Fromme,¹⁵ Christina Y. Hampton,¹⁴ Mark S. Hunter,¹⁵ Linda C. Johansson,¹³ Gergely Katona,¹³ Christopher Kupitz,¹⁵ Mengning Liang,⁴ Andrew V. Martin,⁴ Karol Nass,¹⁶ Lars Redecke,^{17,18} Francesco Stellato,⁴ Nicusor Timneanu,¹⁹ Dingjie Wang,⁵ Nadia A. Zatsepin,⁵ Donald Schafer,¹ James Defever,¹ Richard Neutze,¹³ Petra Fromme,¹⁵ John C. H. Spence,⁵ Henry N. Chapman,^{4,16} Ilme Schlichting^{2,3}

Serial Femtosecond Crystallography of G Protein–Coupled Receptors

Wei Liu,¹ Daniel Wacker,¹ Cornelius Gati,² Gye Won Han,¹ Daniel James,³ Dingjie Wang,⁵ Garrett Nelson,³ Uwe Weierstall,³ Vsevolod Katritch,¹ Anton Barty,² Nadia A. Zatsepin, Dianfan Li,⁴ Marc Messerschmidt,⁵ Sébastien Boutet,⁵ Garth J. Williams,⁵ Jason E. Koglin,⁵ M. Marvin Seibert,^{5,6} Chong Wang,¹ Syed T. A. Shah,⁴ Shibom Basu,⁷ Raimund Fromme, Christopher Kupitz,⁷ Kimberley N. Rendek,⁷ Ingo Grotjohann,⁷ Petra Fromme,⁷ Richard A. Kirian,^{2,3} Kenneth R. Beyerlein,² Thomas A. White,² Henry N. Chapman,^{2,8,9} Martin Caffrey,⁴ John C. H. Spence,³ Raymond C. Stevens,¹ Vadim Cherezov¹

Determination of damagefree crystal structure of an X-ray-sensitive protein using an XFEL

Kunio Hirata^{1,2,9}, Kyoko Shinzawa-Itoh^{3,9}, Naomine Yano^{2,3}, Shuhei Takemura³, Koji Kato^{3,8}, Miki Hatanaka³, Kazumasa Muramoto³, Takako Kawahara³, Tomitake Tsukihara²⁻⁴, Eiki Yamashita⁴, Kensuke Tono⁵, Go Ueno¹, Takaaki Hikima¹, Hironori Murakami¹, Yuichi Inubushi¹, Makina Yabashi¹, Tetsuya Ishikawa¹, Masaki Yamamoto¹, Takashi Ogura⁶, Hiroshi Sugimoto¹ Jian-Ren Shen⁷, Shinya Yoshikawa³ & Hideo Ago¹

doi:10.1038/nature09750

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R. N. C. Maia⁵, Andrew V. Martin¹, Joachim Schulz, Dahlei P. Deronte, Owe Weierstair, R. Bruce Doak, Flipe R. N. C. Mafa, Andrew V. Martin, Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹[†], Robert L. Shoeman⁷, Sascha W. Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Foucar^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Sébastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski¹³, Christoph Bostedt¹³, Saša Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, André Hömke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Strüder^{6,10}, Günter Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai-Uwe Kühnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³, Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond G. Sierra¹⁴, Dmitri Starodub¹⁴, Garth J. Williams¹³, Janos Hajdu⁵, Nieuror Timpenn¹⁵, M. Maryin Scibert^{5,±}, Lelkeb Andreageon⁵, Andrea Bocker⁵, Olociar J. Nicusor Timneanu⁵, M. Marvin Seibert⁵[†], Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jönsson⁵, Martin Svenda⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schröter⁸, Faton Krasniqi^{6,7}, Mario Bott⁷, Kevin E. Schmidt⁴, Xiaoyu Wang⁴, Ingo Grotjohann³, James M. Holton¹⁷, Thomas R. M. Barends⁷, Richard Neutze¹⁸, Stefano Marchesini¹⁷, Raimund Fromme³, Sebastian Schorb¹⁹, Daniela Rupp¹⁹, Marcus Adolph¹⁹, Tais Gorkhover¹⁹, Inger Andersson²⁰, Helmut Hirsemann¹², Guillaume Potdevin¹², Heinz Graafsma¹², Björn Nilsson¹² & John C. H. Spence⁴

Wow, so all we've managed to do is some fancy protein crystallography ?

T. Kimura et al. Nat. Comm. 5, 3052 (2014)

а

TEM image

May 20, 2015

chris.milne@psi.ch

Zakopane School of Physics

403

Time-resolved Wide-Angle X-ray Scattering (WAXS)

2D crystallography at an XFEL

diffraction from 2D crystals of bacteriorhodopsin

B. Pedrini et al. Phil. Trans. Roy. Soc B 369, 20130500 (2014)

bacteriorhodopsin diffraction out to 7Å

(1, 7)

PAUL SCHERRER INSTITUT Single-particle imaging at an XFEL

M.M. Seibert et al. *Nature* **470**, 78 (2011)

single-shot scattering pattern gives enough information to reconstruct the structure of the mimivirus

STRUCTURAL DYNAMICS 2, 041601 (2015)

Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges

A. Hosseinizadeh,^{a)} A. Dashti,^{a)} P. Schwander, R. Fung, and A. Ourmazd^{b)} Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211, USA (Received 15 April 2015; accepted 21 April 2015; published online 30 April 2015)

STRUCTURAL DYNAMICS 2, 041702 (2015)

Perspectives for imaging single protein molecules with the present design of the European XFEL

Kartik Ayyer,¹ Gianluca Geloni,² Vitali Kocharyan,³ Evgeni Saldin,³ Svitozar Serkez,³ Oleksandr Yefanov,¹ and Igor Zagorodnov³ ¹Center for Free-Electron Laser Science, Hamburg, Germany ²European XFEL GmbH, Hamburg, Germany ³Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

(Received 26 February 2015; accepted 16 April 2015; published online 27 April 2015)

STRUCTURAL DYNAMICS 2, 041701 (2015)

The linac coherent light source single particle imaging road map

A. Aquila,^{1,2} A. Barty,³ C. Bostedt,^{1,a)} S. Boutet,¹ G. Carini,¹ D. dePonte,¹ P. Drell,^{1,4,5} S. Doniach,^{1,5} K. H. Downing,⁶ T. Earnest,^{7,8} H. Elmlund,^{9,10} V. Elser,^{1,11} M. Gühr,¹² J. Hajdu,^{13,2} J. Hastings,¹ S. P. Hau-Riege,¹⁴ Z. Huang,¹ E. E. Lattman,^{15,16} F. R. N. C. Maia,^{13,6} S. Marchesini,⁶ A. Ourmazd,¹⁷ C. Pellegrini,^{1,18} R. Santra,^{3,19} I. Schlichting,²⁰ C. Schroer,²¹ J. C. H. Spence,²² I. A. Vartanyants,^{21,23} S. Wakatsuki,^{1,24} W. I. Weis,²⁴ and G. J. Williams^{1,25}

Single shot scattering from Acanthamoeba polyphaga mimivirus

SPECIAL TOPIC: BIOLOGY WITH X-RAY LASERS

Volume 2, Issue 4, July 2015

http://scitation.aip.org/content/aca/journal/sdy/

PHILOSOPHICAL TRANSACTIONS B

Discussion Meeting Issue 'Biology with free-electron X-ray lasers' 17 July 2014; volume 369, issue 1647

http://rstb.royalsocietypublishing.org/content/369/1647

Now that you're convinced how awesome they are, let's build one !

SwissFEL location at the Paul Scherrer Institute

May 20, 2015

Zakopane School of Physics

What are we going to put into this building?

2012-2017

Aramis: 1-7 Å (2-12.4 keV) hard X-ray SASE FEL, In-vacuum , planar undulators with variable gap. User operation from mid 2017

after 2017

Athos :7-70 Å soft X-ray FEL for SASE & Seeded operation .(2nd phase)APPLE II undulators with variable gap and full polarization control.

To be implemented after 2017

SwissFEL parameters

Wavelength from	1 Å - 70 Å		
Photon energy	0.2-12 keV		
Photon / pulse (1Å)	7.3E+10		
Pulse duration	1 fs - 20 fs		
Energy bandwidth	0.05-0.16%		
e ⁻ Energy	5.8 GeV		
e ⁻ Bunch charge	10-200 pC		
Repetition rate	100 Hz		

FEL Beam Design Parameters	Nominal Operation Mode		Special Operation Mode	
	Long Pulses	Short Pulses	Large Bandwidth	Ultra-Short Pulses
Undulator period (mm)	15	15	15	15
Undulator parameter	1.2	1.2	1.2	1.2
Energy spread (keV)	350	250	17000 (FW)	1000
Saturation length (m)	47	50	50	50
Saturation pulse energy (µJ)	150 (*)	3	100	15
Effective saturation power (GW)	2.8	0.6	2	50
Photon pulse length (fs, rms)	21	2.1	15	0.06
Beam radius (µm)	26.1	17	26	17
Divergence (µrad)	1.9	2	2	2.5
Number of photons	7,3.10 ¹⁰	1,7. 10 ⁹	5.10 ¹⁰	7.5. 10 ⁹
Spectral Bandwidth, rms (%)	0.05	0.04	3.5 (FW)	0.05
Peak brightness (# photon/mm ² .mrad ² .s ¹ .0.1% bandwidth)	7.10 ³²	1.10 ³²	8.10 ³⁰	1,3.10 ³³
Average brightness (# photon/mm ² .mrad ² .s ¹ .0.1% bandwidth)	2,3.10 ²¹	5,7.10 ¹⁸	3.1019	7,5.1018

SwissFEL Experimental Stations

Bruce Patterson and co-workers

ESA:

Ultrafast photochemistry and photobiology

ESB:

Pump-probe crystallography

Phase I: Ready by 2017

Phase II: >2017

Materials science and nanocrystallography

ESC:

Scientific Case B. Patterson editor

http://www.psi.ch/swissfel/

- FED

May 20, 2015

Zakopane School of Physics

→ pump: launch coherent excitation (phonon, spin wave, charge wave, orbital wave, ...) \rightarrow tune system close to critical point (apply static pressure or B-field at low T)

[[]P. Coleman, Nature 413 (2001)]

\rightarrow X-ray probe: how does the (coherent) excitation evolve in time ?

↔ tr-XRD: measures changes in lattice constants & symmetry

- \leftrightarrow tr-RXRD: sensitive to coupling of charge-, orbital- and spin-order (\leftrightarrow polarization)
- \leftrightarrow tr-(N)TDS: measures S(**q**, ω = 0) & fluctuating coherence length ξ_F

 \leftrightarrow tr-(R)IXS: measures S(**q**, ω) & change of momentum dispersion

ESA: Ultrafast photochemistry and photobiology

Chris Milne and Jakub Szlachetko

We want time-resolved electronic and structural information on these systems as they evolve

Chris Milne, Gregor Knopp and Jakub Szlachetko

Zakopane School of Physics

Acknowledgements

SwissFEL project:

SLS: Detectors: BIO Department

LCLS:

EPFL: XFEL: Wigner: Argonne: SACLA: SACLA: Tohoku Uni.: Uppsala Uni.: Polish Academy of Sciences: Uni. Fribourg: J. Stefan Institute: R. Abela, P. Juranić, L. Sala, T.J. Penfold, J. Rittmann, G. Knopp, J. Czapla-Masztafiak T. Huthwelker, M. Nachtegaal, D. Grolimund, C. Borca A. Mozzanica, J. Smith, B. Schmitt J. Standfuss, P. Nogly, G. Schertler, V. Panneels

S. Boutet, G. Williams, M. Messerschmidt, M. Sikorski, A. Robert M. Chergui, F. Santomauro, J. Rittmann W. Gawełda, A. Britz G. Vankó, Z. Németh G. Doumy, A.M. March, S. Southworth, C.S. Lehmann T. Katayama, M. Yabashi, T. Togashi, S. Owada K. Ueda, D. Iablonskyi, K. Motomura, Y. Kumagai M. Mucke E. Lipiec, W. Kwiatek J-C. Dousse, J. Hoszowska, W. Błachucki, F. Zeeshan M. Kavčič