

Plasma Nanotechnologies for Cardiovascular Implants

Artificial blood vessel

Miran Mozetič Department of Surface Engineering Jozef Stefan Institute Ljubljana, Slovenia

Classical technologies for materials processing run close to thermal equilibrium

Rather high temperature is required for chemical reactions

Materials can be damaged before achiving certain effects

Q: Is it possible to avoid high temperature?

Heating of materials by gas depends on the gas temperature

Chemical reactivity of oxygen depends on the concentration of molecules in excited states

$$\frac{N_a}{N} = e^{-\frac{W(kT)}{kT}}$$

Nature does not allow high density of excited states at low gas temperature

Avoid the basic law of thermodynamics!

Q: How do we avoid thermodynamics?

A: Do not create highly excited states by heating of gas.

Use free electrons instead

Free electrons are capable to excite molecules without heating them!

Electrons cannot heat gas (transfer kinetic energy to a molecule) due to the small mass

Elastic collision

 $W_k = \frac{1}{2} M v^2 \rightarrow$ Kinetic energy of heavy molecule is negligible

ELECTRONS EXCITE MOLECULES EASILY BUT NOT HEAT THEM

Q: How do we create gas with substantial amount of free electrons?

A: In an electrical discharge

Applications

Activation of polymers for better adhesion (painting, printing)

0

Discharge cleaning

Sterilization

Plasma 486

Synthesis of nanoparticles

Cardiovascular diseases represent the major cause of death in wealthy countries

Only in USA, the costs annual exceed 500 billion \$

Learn and Live "

stress

improper diet

Curing of cardiovascular diseases is by surgery

Vascular grafts

Graft is pushed out of the catheter

stents

A common post-surgery complication is thrombosis

Coagulation cascade

Fibrinogen to fibrin fibres

fibrin fibres form a network capturing erythrocytes

http://www.ldeo.columbia.edu/micro/im ages.section/pages/bloodclot.html

Fibrin fibres accommodate quickly upon incubation of an artificial blood vessel with blood

Vascular grafts are made from knitted polymers, often PET

Coagulation cascade is stimulated by platelet activation

Platelets' shape change upon activation

Activation of blood platelets on polymer surface is due to insufficient biocompatibility

Possible solutions:

Coat with heparin

Gaseous plasma treatment

Make the contact area minimal by nano-structuring

Platelets spread on <u>smooth</u> surface of polymer

Minimize the contact area!

Y

PET substrate

platelet PET substrate

Contact area is minimized by making substrate rough on sub-micron scale

PET polymer for vascular grafts is semi-cristalline

amorphous

crystallites

SELECTIVELY ETCH THE AMORPHOUS PHASE AND YOU WILL MAKE MATERIAL ROUGH ON SUB-MICRON SCALE

Reactive oxygen species cause low-temperature "burning" of polymer

> Etching rate depends on crystallinity (nm/s)

SEM image -

optimal

roughness

Non – equilibrium oxygen plasma is an excellent medium for selective etching of carbon-containing materials

AFM image of plasma treated originally smooth semicristalline PET foil

Surface morphology changes upon plasma treatment

Plasma radicals readily interact chemically with the surface of organic materials

O – atoms are incorporated into the surface layer of polymer forming O-rich functional groups.
Hydrophilicity is improved dramatically

Photoelectron spectrum gives composition in few nm thick film

ToF-SIMS shows extremely high concentration of O-rich functional groups on the very surface

Even a brief treatment by oxygen plasma prevents activation of blood platelets

PET foils are used instead of real vascular grafts for quantification

Even a brief treatment by oxygen plasma prevents activation of blood platelets

Activation of blood platelets on polymer surface is due to insufficient biocompatibility

Possible solutions:

Coat with heparin

Gaseous plasma treatment

Make the contact area minimal by nano-structuring

Another approach: coating of polymer surface with heparin

polyethylene terephthalate (PET) surface is functionalized with amono groups

Nitrogen plasma: N_2 is transformed to N_2^+ , N_2^* , N, N*etc

Plasma 480	

Compositi	on af(er pla	sma	
treatment	С	Ν	Ο	
untreated	74.7		25.3	
NH ₃	64.7	10.6	24.7	
NH ₃ +Ar	65.8	9.6	24.5	
N ₂	61.2	2.9	35.8	
N_2 - H_2	64.5	4.2	31.4	

Best results are obtained by ammonia plasma treatment

NH groups are created in amonia plasma

High-resolution C1s XPS peak cannot reveal amino groups

One can calculate concentration of amino groups from measured Cl content

urface composition after derivatization					
	C	Ν	Ο	Cl	
NH ₃	69.9	3.5	24.8	1.9	
NH ₃ /Ar	70.2	3.0	24.5	2.3	
N ₂	65.0	1.4	33.1	0.5	
N ₂ -H ₂	66.6	2.1	30.5	0.8	

Power (W)	NH_2 /%
untreated	0,4
75 W	3,8
100 W	3,4
150 W	3,7
200 W	3,7
250 W	3,1
$NH_3 + Ar$	4,3
N_2	0,8
$\overline{\mathbf{N}_2} + \mathbf{H}_2$	1,3

XPS gives average values over thickness about 5 nm

Surface is saturated with NH₂ groups after plasma treatment

Amino-groups conc. up to around 4%

Functionalized PET was incubated with heparin

Ultra-thin layer of heparin is formed

Optical microscopy for untreated (left) and treated (right) PET

Incubation with human umbilical vein endothelial cells (HUVEC)

Samples coated by heparin allow for improved adhesion of HUVEC cells

Incubation with human microvascular endothelial cells (HMVEC)

M. Kolar, A. Vesel, M. Modic, I. Junkar, K. Stana-Kleinschek, M. Mozetic,

Method for immobilization of heparin on a polymeric material:

patent application number GB 1416593.0. London: Intellectual Property Office (2014)

Extremely poor adhesion on untreated substrates

Conclusions:

- Vascular grafts made from PET have excellent mechanical and chemical properties but poor hemocompatibility
- Nanostructuring + functionalization with polar groups helps
- Best results are obtained by covalent bonding of heparin
- NHx radicals from ammonia plasma allow for functionalization of PET with amino groups
- Endothelization is improved

Most results taken from theses:

- Martina Modic, Hemostatic response of plasma treated artificial grafts (2012)
- Metod Kolar, Modification of PET biocompatibility by immobilisation of heparin (2015)

Many thanks to

Prof. Alenka Vesel Prof. Uroš Cvelbar Prof. Janez Kovač Dr. Gorazd Golob Dr. Aleksander Drenik Dr. Ita Junkar Dr. Rok Zaplotnik Dr. Gregor Primc Nina Recek, PhD student

