

LASER-INDUCED NANOPARTICLE FORMATION IN LIQUIDS: INVOLVED MECHANISMS AND ROLE OF THE EXPERIMENTAL PARAMETERS

<u>**T. E. Itina</u>**,¹ L. Delfour,¹ A. Rudenko,¹ K. Maksimova², A. V. Kabashin², M. E. Povarnitsyn³, A. A. Antipov,⁴ S. Arakelyan,⁴ S. Kutrovskaya,⁴ and A. Kucherik⁴</u>

¹Hubert Curien Laboratory, CNRS/Lyon University, Saint-Etienne, France ²LP3 Laboratory, CNRS/Aix-Marseille University, Marseille, France ³Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia ⁴Stoletov's Vladimir State University, Vladimir, Russia

*tatiana.itina@univ-st-etienne.fr

OUTLINE

- 1. Importance and motivation
- 2. Laser ablation in vacuum and in a background gas

-Shock waves (SW) and NP formation

3. Laser ablation in liquids

-"Primary" particles: direct ejection, nucleation in bubble or in solution ?

-Secondary" particles: evaporation/growth, coalescence, agglomeration

4. Laser-induced particle size reduction and fragmentation

-Role of laser absorption by particles, fragmentation, stabilization

5. Summary

1. Importance and motivation

Motivation

Applications of Metallic Nanoparticles (NPs)

Plasmonic properties

-Sensors

-New generation of solar cells

-Cancer treatment (photodynamic therapy, photo-thermal therapy, radiation therapy, drug delivery, etc...)

-**Diagnostic imaging** MRI (contrast agents), fluorescence Imaging, optical coherence tomography, opto-acoustic tomography, radionuclide Imaging, ultrasound imaging

-Antiseptics and tissue engineering

Green Chemistry ? Laser-produced colloidal NPs are chemically clean and biocompatible

- Photon-based nanoscience and nanobiotechnology, Nato Science Series Vol. 239
- Journal of NanoBiotechnology

Salata, 2004

Laser-assisted NP formation

- Laser beam is focused on a target -
- Target material is heated and ejected _
- Nanoparticles are formed

Deposited

nanoparticles,

Garrelie et al.

Courtes of

Nanoparticles produced on the target Kabashin et al.

(a)

Colloidal nanoparticles Barcikowski et al. APL 2007 Sol-gel nanoparticle arrays Bois et al. J. Sol. State Chem. 2009

100 nm

Heiroth et al. JAP 2009

2. Laser ablation in vacuum and in a background gas

Processes involved

- Radiation absorption by target and by plasma
- Creation of regions with high T et P
- Propagation of pressure and thermal waves
- Phase transitions and material decomposition
- Ionization
- Ejection of electrons, ions and particles
- Plasma plume formation
- Collisions and chemical reactions
- -Formation of clusters and nanoparticles (NPs)
- -Emission
- More ...
- \Rightarrow Many physico-chemical processes
- \Rightarrow Depend on target material and laser source
- \Rightarrow Different time scales

Role of Pulse Duration

NANOSECOND

heat diffusionmeltingboiling

evaporation

$$J \sim \frac{p_b}{\left(2\pi kTm\right)^{1/2}} \exp\left\{\frac{\Delta H_v(T_b)m}{k}\left(\frac{1}{T_b} - \frac{1}{T}\right)\right\}$$

FEMTOSECOND

• τ is shorter than τ_{ei}

•thermal conductivity during the pulse is negligible

strong pressure gradients

 less energy is transformed into heat and more into motion

Ablation mechanisms ?

Nanosecond Laser Pulses

In vacuum

In a gas

Low pressure

Atmospheric pressure

Pereira et al. XeCl, 30 ns, 10 J/cm2, steel

Stoichiometry is better preserved than in SD!

J. Appl. Phys. 98, 064902 (2005)

Femtosecond Laser Pulses

In vacuum

Plume images recorded during ablation of gold and copper for several times and a laser fluence of 4 J cm⁻²

Hermann et al., Laser Phys. 2008

In a gas

Two components were also observed

- by Garrelie et al. for fs ablation of carbon in vacuum (2001)
- By Grojo et al for fs ablation of Ti, Zr, Hf in vacuum (2002-2003)

Plume images recorded during ablation of Fe in a background gas

Amoruso et al, APL 2008

NP's formation in vacuum

Molecular dynamics simulations

Longer laser pulses (>ns) Small laser intensity

+ nucleation/growth in the plume via condensation, coalescence and/or aggregation

Short laser pulses (ps, fs) High laser intensity

⇒direct ejection of nanoclusters

 \Rightarrow the higher is F the smaller are the particles

J. Phys. Chem. B, 106, 303-310 (2002)

Two temperature hydrodynamics

$$\frac{\partial V}{\partial t} - \frac{\partial u}{\partial m} = 0, \qquad (1)$$

$$\frac{\partial u}{\partial t} + \frac{\partial (P_i + P_e)}{\partial m} = 0, \qquad (2)$$

$$\frac{\partial e_e}{\partial t} + P_e \frac{\partial u}{\partial m} = -\gamma_{ei} (T_e - T_i) V + Q_L V$$

a

$$+\frac{\partial}{\partial m} \left(\kappa \frac{\partial T_e}{\partial z}\right), \qquad (3)$$
$$\frac{\partial e_i}{\partial t} + P_i \frac{\partial u}{\partial m} = \gamma_{ei} (T_e - T_i) V. \qquad (4)$$

- 2T Lagrangian hydrodynamics
- 2T semi-empirical equations of state (for metal, gold here)
- Electron-ion coupling
- Thermal conductivity
- Wide range permittivity

$$\nu_{\text{eff}} = \min(\nu_{\text{met}}, \nu_{\text{max}}, \nu_{\text{pl}}) \qquad \gamma_{ei} = \frac{3k_B m_e}{m_i} n_e \nu_{\text{eff}}$$

$$\kappa_{\rm met} = \frac{\pi^2 k_B^2 n_e}{3m_e v_{\rm eff,t}} T_e \qquad T_e << T_F \\ \kappa_{\rm pl} = \frac{16\sqrt{2}k_B (k_B T_e)^{5/2}}{\pi^{3/2} Z e^4 \sqrt{m_e} \Lambda} \qquad T_e >> T_F \\ \varepsilon = \varepsilon_{\rm pl} + (\varepsilon_{\rm met} - \varepsilon_{\rm pl}) e^{-A_4^p T_e/T_F}$$

Thermodynamic analysis of laser ablation in vacuum

400

400

600

11 10

9.0

8.0

7.0

6.0

5.0 4.0

3.0

2.0

1.0

n

600

 $\tau_{l} = 100 \text{ fs}, \lambda = 800 \text{ nm}, F = 5.0 \text{ J/cm}^{2}$

- In vacuum, fragmentation of metastable liquid • leads to the ejection of clusters an chunks
- What is the mechanism in liquid?

In a gas: Shock wave

Shock wave (SW) Estimation : 3D blast wave

$$R = \xi \left(\frac{2E_0}{\rho}\right)^{1/5} t^{2/5}$$

$$\frac{T}{T_0} = \left(\frac{V_0}{V}\right)^{\gamma-1} \Longrightarrow T \equiv T_0 \left(\frac{R_0}{R}\right)^{3(\gamma-1)}$$

$$T_{eq} = \left\{ \frac{1}{T_b} - \frac{k}{Q} \ln\left(\frac{P}{P_0}\right) \right\}^{-1}$$

$$\theta = \frac{T_{eq} - T}{T_{eq}}$$
, see Zel'dovich & Raizer

Supersaturation degree vs time:

 $r^* = \frac{2\sigma\nu}{\theta kQ}$

$$\theta = 1 - \frac{T}{T_{eq}} = 1 - T \left\{ \frac{1}{T_b} - \frac{k}{Q} \ln\left(\frac{P}{P_{atm}}\right) \right\} = 1 - \frac{T_0}{T_b} \left(\frac{R_0}{R}\right)^{3(\gamma-1)} \left\{ 1 - \frac{kT_b}{Q} \ln\left[\frac{3*N_{tot}*k*T_0}{2*\pi*R^3*P_{atm}} \left(\frac{R_0}{R}\right)^{3(\gamma-1)}\right] \right\}$$

Itina, Voloshko, Appl. Phys. B 2013

Fs ablation in a gas : Plume contains NPs

Z, m

1.92E-02

1.26E-02

7.78E-03

4.32E-03

1.83E-03

3.04E-05

Z, m

1.28E-02

8.38E-03

5.19E-03

2.88E-03

1.22E-03

2.03E-05

atoms

nanoparticles

Experiments:

Amoruso et al. Phys. Lett. 93, 191504 (2008)

Calculated plume dynamics for the Ni expansion **in** Ar gas at 300 Pa up –density of clusters at t=10 µs down–density of clusters at t=0.55 µs

NP Size Distributions (in a gas or a liquid)

Laser ablation in air (ns)

Pereira et al. AFM steel in air, 25ns F=10 Jcm⁻²

Fs laser ablation in liquid

Background gas or liquid=> LogNormal functions

Kabashin et al. Au, TEM F=60 Jcm⁻²

3. Laser ablation in liquids

-"Primary" particles: direct ejection, nucleation in bubble or in solution ? -Secondary" particles: evaporation/growth, coalescence, agglomeration

NPs formation in liquids

1. Early stage – laser energy absorption, material ejection, plume formation

2. Intermediate stage – plume expansion in the presence of a confining liquid environment, formation of a cavitation bubble (CB)

3. Late stage – CB's collapse, plume mixing with the liquid, NP coalescence/aggregation processes.

Main questions

- \Rightarrow Can NPs be directly ejected from the target?
- \Rightarrow Are NPs formed by condensation in the plume/cavitation bubble or later in liquid solution ?
- \Rightarrow What stage plays the major role ?

Ablation in the presence of a liquid

-shock wave formation, but also

-bubble formation

- \Rightarrow Origin of "primary" particles?
- ⇒ "Secondary" particles will be formed later by coagulation, coalescence/aggregation
- \Rightarrow fragmentation

 \Rightarrow ...

Confinement by liquid

$$R_{n}(t) = \left\{ R_{na}^{3} + \frac{R_{nb}^{3} - R_{na}^{3}}{2\tau} \left[t - \frac{\tau}{\pi} \sin\left(\frac{\pi}{\tau} t\right) \right] \right\}^{1/3}.$$

Vogel et al., J. Acoust. Soc. Am. 100(1), 1996

=>Hydrodynamic modeling

- Gold target in water
- 2T semi-empirical equations of state (for metal, gold here)
- EOS for water

 $I(t)=I_0 \exp(-4\ln 2 t^2/\tau^2)$, $\tau=200 \text{ fs}$, 800 nm, $I_0 = 2$, 3, 4, 5 × 10¹³ W/cm²

Single fs pulse, Au in water: simulation close to threshold

=> Void formation, higher threshold, fragments cannot escape 21

Increase in laser intensity

Near ablation threshold, ejected droplets stick together under the pressure

F>> unstable liquid-gas phase (orange) extends and presses liquid back (t=5ns)

=>NPs are formed in the unstable liquid+gas region (under spinodal) rather then by condensation or fragmentation 22

Near ablation threshold

- Fragmentation does occur, but ambient liquid prevents the expansion
- The fragments stick together under the pressure of the ambient liquid

=> no NPs are expected

With the increase in laser fluence

- Upper layers cross the spinodal and enter into unstable liquid-gas region (orange zone)=> NPs can be formed here
- Part of trajectories reach supersaturated gas region, where condensation takes place

Single pulse in liquid: large laser fluence

- more trajectories enter to the gas-liquid zone (orange region) => more important yield of « primary »NPs
- In addition condensation takes place in the region of supersaturated vapor

=> Two generations of primary NPs: larger particles from unstable liquid-gas and smaller ones due to nucleation

Zoom into the region of supersaturation

Phase trajectories for 4 layers, single pulse with 5×10¹³ W/cm²

- In the supercooled gas (SCG) region, saturation degree $\Theta = \frac{T_{eq} T}{T_{eq}} \in \{0.1, 1\}$
- Nucleation, critical radius $r_c = \frac{2\sigma\omega}{q \, \Theta_{max}} \sim 10^{-8} / \Theta_{max} \sim 10 100 \, \text{nm}$

$$\rho(t) = K_c c^2 \exp\left[\frac{-\Delta G(n_c, c)}{kT}\right]$$

$$\frac{dN_1}{dt} = \rho(t) - \sum_{j=2}^{\infty} j \frac{dN_j}{dt} \quad \frac{dN_2}{dt} = fK_1 N_1^2 - K_2 N_1 N_2$$

$$\frac{dN}{dt} = K_{S-1} N_1 N_{S-1} - K_S N_1 N_S \ (s \ge 3)$$

$$K_n = 4\pi (a + an^{1/3}) (D_a + D_a n^{-1/3}) \approx 4\pi an^{1/3} D_a$$

$$= \sum \text{LogNorm}$$

Park et al. J. Chem. Phys. B 105, 11603-11635 (2001)

Diffusion-driven nucleation

$$\Delta G(n,c) = -nkT\ln(c/c_0) + 4\pi a^2 n^{2/3}\sigma$$

Saturation curve

Supersaturation ratio

$$S = c / c_0$$

The peak of the nucleation barrier corresponds to the critical cluster size

$$n_c = \left[\frac{8\pi a^2\sigma}{3kT\ln S}\right]^3$$

Jnuc ~
$$\exp\left[\frac{-\Delta G(n_c,c)}{kT}\right]$$

At given T pressure should be high => need of high loading

Secondary particles => Aggregation/Coalescence

Smoluchowski master equation

$$\frac{\partial n}{\partial t} = \frac{1}{2} \int_{0}^{v} \beta(\tilde{v}, v - \tilde{v}) n(\tilde{v}) n(v - \tilde{v}) d\tilde{v} - \int_{0}^{\infty} \beta(v, \tilde{v}) n(\tilde{v}) n(v) d\tilde{v} \qquad N_{\rm p} = \frac{v}{v_{\rm p}} = A \left(\frac{r}{r_{\rm p}}\right)^{D_{\rm f}} d\tilde{v}$$

Petrus J. Dekkers*,1 and Sheldon K. Friedlander

Kernel depends on the regime

- 1. Free molecular regime (Kn >>1)
- 2. Continuum regime (Kn <<1)
- Near-Continuum transition regime (0.01<Kn<1)
- The distribution is the narrowest in the near-continuum transition regime (0.01<Kn<1) when there are collisions between the primary particles, but not too much

Collisional growth of secondary particles

Calculated size distribution obtained for 1-10, 2-100, 3-1000 and 4-2000 pulses. Here, laser frequency is 1 kHz, gold solution in water is considered with *a*=1.9 10⁻¹⁰ m.

How to reduce mean size and/or size dispersion ?

-Reduce the number of collisions to avoid aggregation

Ablation yield/loading reduction=>near free-molecular regime

-Reduce the probability of aggregation

Chemical composition of the solution, surfactant molecules

- -Reduce background temperature
- -Irradiate solution by light

(continuum generation followed by particle fragmentation in a solution)

How to reduce NP's size ?

\Rightarrow Surfactant molecules

Change in stiking parameter

=>Additional laser irradiation

depends on laser wavelength, fluence and size of particles

=>mechanisms ?

Träger et al. Sylvestre et al. 2004 Pustovalov et al. 2005 Pyatenko et al. 2005

4. *Laser-induced particle size reduction and fragmentation*

MOTIVATION

Main goal: understanding ultra-short laser interactions with metallic nanoparticle (NP) for better control over laser-assisted NP formation in liquids

Werner et al. J. Phys. Chem. C, 2011, 115 (12), 5063

J. Phys. Chem. C, 2011, 115 (12), 8503 For different applications, such as -photodynamic therapy, cancer treatment -photonic and plasmonic devices -sollar cells, novel energy sources -sensors

ABSORPTION

Au NPs with radius in the range 10-100 nm

ABSORPTION COEFFICIENT vs RADIUS

Gold NPs water

Generalized Mie theory=>

1- calculated absorption coefficients vs AuNP's radius, R For water (red) and vacuum (black) at 400 nm

> peak in absorption at R~30nm for AuNP in water

2- calculated absorption, coefficients vs NP's radius, R for AnNPs in water and different wavelength (300-800nm)

=> peak position is shifted to larger R if wavelength rises

HEATING by FS LASER: TWO TEMPERATURE MODEL (TTM)

PARAMETERS FOR TTM

ELECTRONIC & LATTICE TEMPERATURES

30 nm radius gold particle in water absorbing laser pulse of **150 fs** at **400 nm** with laser fluence of **12.3 mJ/cm²** Gaussian time profile

Agreement with

Werner et al. J. Phys. Chem. C, 2011, 115 (17), 8503

=>T_e rises instantaneously, then energy deposited into the electronic system is transferred to the lattice => T₁ rises

=>Particle cools through heat exchange with the surrounding water

ELECTRON EMISSION

 N_{therm} is the total **number of emissible electrons** : $N_{therm} = \alpha . n_{\epsilon}$

where n is a number of electrons with kinetic energy that exceeds the work function per atom at an electron temperature of T_{a} : $n_{s} = \int_{s}^{\infty} EDOS(E) \cdot f(E, \mu(T_{e}), T_{e}) \cdot dE$ electronic density of states for a broad range of T_e chemical potential value depends on Te 10 EDOS Rayleigh instability factor 0.9 EDOS(Te) 9 0.8 0.7 8 0.6 u (eV) 0.5 0.4 6 0.3 0.2 5 0.1 4 6500 7000 7500 8000 8500 9000 0 10000 20000 30000 40000 50000 Te (K) Te(K)

Bévillon et al. Phys. Rev. B 89, 115117 (2014)

The criterion is based on Rayleigh instability factor ("Liquid drop"): Electrostatic explosion can occur if X > 0.3, where $X = (N_{therm}^2/N_e) / (16.\pi r_{ws}^3.\sigma/e^2)$

 $\alpha = 4V / a_{fcc}^{3}$ total number of atoms in the particle

Fluences required for melting are smaller than the ones for CE if radius <~30 nm

RESULTS FOR fs LASER and AuNPs

Werner et al. J. Phys. Chem. C, 2011, 115, 8503

If F>~17.2mJ/cm², thermal evaporation of R~30 nm AuNP occurs For smaller F => no size reduction of 30 nm particles => To decompose such particles, one needs an increased fluence =>confirms the switching to the red curve

- Primary NPs are formed in or even before the cavitation bubble mostly by spinodal decomposition and by condensation
- Later stage => formation of "secondary" particles due to nucleation and aggregation
- Size distribution is log-normal due to collisional growth
- Mean size of nanoparticles can be also reduced by

 Surfactant molecules
 Additional laser irradiation

Discussions with:

S. Mottin, A. Tishchenko

Support from:

PALSE ERTIGO project PICS CNRS/RAS project FP7 EU project BUONAPART-E CINES of France

THANK YOU FOR YOUR ATTENTION!

tatiana.itina@univ-st-etienne.fr