Radiation track structure the beginning of the end

MARIE DAVÍDKOVÁ

KATEŘINA PACHNEROVÁ BRABCOVÁ, VÁCLAV ŠTĚPÁN ALEXANDRA LITVINCHUK, JANA VACHELOVÁ Nuclear Physics Institute CAS, Prague, Czech Republic

ANNA MICHAELIDESOVÁ Proton Therapy Center Czech, Prague, Czech Republic

LUDĚK VYŠÍN Institute of Physics CAS, Praha, Czech Republic

MARTIN FALK, IVA FALKOVÁ Institute of Biophysics CAS, Brno, Czech Republic

50th Zakopane School of Physics, 2015

Particle track

 all energy depositions (ionizations, excitations) produced by primary particle and all secondary particles

 Electron 100 keV
 ~1,5keV/μm

 C ion 480 MeV/n
 14 keV/μm

 Proton 1 MeV
 24 keV/μm

Deposited energy 100 keV

LET - linear energy transfer, $L_{\Delta} = (dE/dx)_{\Delta}$

Track vs target structure

1000 Electron 100 keV ~1,5 keV/µm 900 C ion 480 MeV/n 14 keV/ μ m 800 24 keV/μm Proton 1 MeV 700 600 500 100 Nucleosome Histone S 600 700 00 800 nm 2 nm 300 nm 700 nm 1400 nm 11 nm 30 nm Condensed Chromatine DNA Nucleosomes Chromatine chromatine Chromosome loops loops

Radiation damage to DNA

Cluster damage

- locally multiply damaged site = any combination of two or more types of DNA damage (SSB, DSB, oxidized bases)
- Reduction, or inhibition of repair \rightarrow chromosomal abnormalities \rightarrow cancer cells
- Two types of clusters: non-DSB clusters > DSB clusters
- Dependent on microscopic radiation quality factors (localization of effects linked to ionization density) – usually simplified approach of linear energy transfer concept (LET)

Direct vs indirect effect of ionizing radiation

Radiation damage to DNA

Model system – DNA plasmid

- Plasmid DNA (0.5-10 kbp, e.g. pBR322, pUC) are circular double-stranded DNA purified from bacteria
- Plasmid forms can be easily separated by agarose gel electrophoresis

Plasmid DNA (pBR322), adsorption from solution with 1 ng/µl in water with only residual TE buffer, all forms are included and marked. On the right the

Supercoiled

SSB

DSB

Proton irradiation

- U120-M cyclotron, Nuclear Physics Institute CAS
- DNA plasmid pBR322
- Oxidized bases detected with Fpg (formamidopyrimidine DNA glycosylase) and Nth (Endonuclease III) - optimized reaction buffers and concentration due to titration

- Agarose gel electrophoresis → separation of supercoiled (SC), relaxed (R) and linear (L) form
- Yields of SSB and DSB (Parameters µ and φ are the average numbers of single and double strand breaks per plasmid and Gy) calculated according to two statistical models:

Cowan, Collis, Grigg, 1987, J. Theor. Biol. 127, 229

 $S(D) = e^{-(\mu_0 + \mu D)} / (1 + \phi_0 + \phi D),$

$$C(D) = (1 - e^{-(\mu_0 + \mu D)})/(1 + \phi_0 + \phi D),$$

 $L(D) = (\phi_0 + \phi D)/(1 + \phi_0 + \phi D),$

McMahon and Currell, 2011, Radiat. Res. 175, 797

$$S(D) = S_0 e^{-(\mu D + \phi D)}$$

$$C(D) = e^{-\phi D} [C_0 e^{-0.5\mu\rho D^2} + S_0 e^{-0.5\mu^2 \rho D^2} - S_0 e^{-\mu D}]$$

$$L(D) = 1 - (S_0 + C_0)e^{-(\phi D + 0.5\mu^2 \rho D^2)}.$$

DNA: dry and in solution

LET in water and in the dry samples in keV/ μ m of proton beam

Proton energy	Water	Dry sample		
30 MeV	1.903	2.612		
20 MeV	2.648	3.636		
10 MeV	4.657	6.394		

L. Vyšín et al., Radiat Environ Biophys, 2015, DOI 10.1007/s00411-015-0605-6

DNA: scavengers (coumarin-3-carboxylic acid - C3CA)

- Isolated events: SSB (without enzymatic treatment) + isolated bases (increase of SSB after enzymatic treatment compared to SSB without enzymes)
- Cluster events: DSB (without enzymatic treatment)
 + cluster bases (increase of DSB after enzymatic treatment compared to DSB without enzymes)

 Table 1. Yields of DNA damage per 10⁶ bp per Gy for different concentrations of C3CA scavenger

[C3CA], mM	0	2	20	200
SSB	113.76	24.79	9.17	1.22
Isolated oxidized bases	113.09	18.02	13.32	3.39
Total isolated events	226.85	42.81	22.49	4.61
DSB	3.99	1.93	0.89	0.76
Clustered oxidized bases	14.58	1.54	0.41	0.00
Total clustered events	18.57	3.46	1.31	0.76

Brabcova et al. Radiation Protection Dosimetry, 2015, DOI:10.1093/rpd/ncv159

Ion irradiation at HIMAC, Japan

500 MeV/u Fe, 290 MeV/u C ions

K. Pachnerova Brabcova et al., Radiat Environ Biophys (2014) 53:705–712

Conclusions 1.

- Yields of both simple and clustered DNA damages are suppressed in presence of scavengers.
- With increasing LET, the unscavengeable effect become more important.
- Extremely careful control of experimental conditions is necessary

What about cells?

Jezkova et al. Applied Radiation and Isotopes 83(2014): 128–136

Proton Therapy Center Prague

- IBA cyclotron provides proton beams with energy up to 226 MeV
- Irradiation modes: single scattering, double scattering, uniform scanning, pencil beam scanning
- First patient on 12/12/12

Relative Biological Effectiveness in a proton SOBP

- Irradiation plans were prepared in XIO treatment planning system using the PBS model used for patient treatment for target volume 16 cm x 8 cm x 10 cm. The different positions in the SOBP were adjusted using different thicknesses of RW3 plastic.
- Samples were placed at the beam entrance, in the proximal region of SOBP, in the middle and before the distal edge of SOBP.
- The dose at the beam entrance was 80 % of the dose maximum. The homogeneity of the dose in the PTV was ±2 %.

Relative biological efficiency - RBE

RBE in SOBP

In vitro 1.21 ± 0.2

In vivo 1.07 ± 0.17

Paganetti et al., IJROBP 53, 407-21, 2002

Human neonatal dermal fibroblasts - cell survival

Human neonatal dermal fibroblasts - cell survival

The survival level in the middle position in comparison to the distal position 1.31±0.22 times higher in average.

Human neonatal dermal fibroblasts - cell survival

DNA damage – Micronuclei formation

Fig. 1 Examples of micronuclei formation in human neonatal fibroblasts at first division after irradiation by 3 Gy using a Co-60 gamma rays, b scanning pristine 30-MeV proton beam

Cytokinesis-block micronucleus assay - Cells were reseeded just after the irradiation, 24 hrs after irradiation Cytochalasin B was added in concentration 1 µg/ml in medium and cells were incubated at 37 °C and 5% CO₂ atmosphere for 24 hours. After the incubation, cells were fixed by Methanol:acetic acid (9:1) and stained by Giemsa. The total amount of calculated cells was 500-1000 per case. The formation of binuclei (BNC), mononuclei (MNC), micronuclei (MN) and giant cells was followed.

Cytokinesis-block micronucleus assay

Conclusions 2

RADIATION TRACK MATTERS

- RBE in a proton SOBP increases significantly towards a distal edge of the SOBP
- Further extensive studies needed (other cell lines, dose rates, fractionation regimes, ...)
- Necessary to follow in the same experiment multiple parameters of the cell culture: survival, apoptosis, necrosis, DNA repair

Acknowledgements

ESA

ESTEC-Contract No.4000101677/10/NL/PA-NPI 120-2009 project No. AO-7146

Ministry of Education, Youth and Sports CR

research projects n. LD12008 and LD12039 OPVK CZ.1.07/2.3.00/30.0030

Czech Science Foundation

Centres of Excellence P108/12/G108 and P302/12/G157

COST MP1002 Nano-scale insights in ion beam cancer therapy (Nano-IBCT)

Cell irradiations have been performed at U120M cyclotron, Tandetron 4130 MC accelerator of the Center of Accelerators and Nuclear Analytical Methods (CANAM infrastructure, project No. LM2011019) and IBA cyclotron in the Proton Therapy Center Prague.

PROTON

THFRAPY

CENTER